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I Introduction
The Helmholtz equation
2
AQ +n g =20 - (I,1)
and the Laplace's equation
aQ =0 (1,2)

have a great significance in physics. There are many equations,
important for physical and technical applications, which reduces
to Helmholtz equation if time dependence is separated. These equa-
tions are i.a

1) The diffusion equation:

2 1_ 9¢
be = 2 ot

Thig type of equation appears, f.e., in heat conduction theory,

diffusion theory and circulatory motion theory.

2) The wave equation:

Se=TH TR
c dt

3) The damped wave equation:

n 32 oL

e i 3g o3

Lo =g T+ Ry
c ot

-
{

4) The transmission line equation:

2
1 % Cl]
Q =% 2+Rat+SQ
c 0t

4" 2
5) The vector wave equation:

N =

w
=22
¢



The equations enumerated under 1) -5) describe quite generally the
propagation of waves.

'The Laplace equation occurs, f.e., in elasticity theory (stress prob-

lems, tortion problems, distortion problems, thermal elasticity prob-
lems a.8.0.), in potential theory and in potential flow problems.
Concerning the separability it is well-knéwn that these equations
can be separated in special coordinate systems. One distinguishes

R and S separability.
S-separability: If the assumption
QR = U1(n1) . U2<n2) . U3<n3) (193)

permits the separation of the partial differential equatirns (1)
and (2),respectively,into three ordinary differential equatiecns, the

equation is said to be simply seperable or S.separable.

R-separability: If the assumption

5, (a,) Ty(n,) U, (a)
R(n1, n,, n3)

R = (134)

permits the separation of the partial differential equations (1)
and (2), respectively, into three ordinary differential equations,

and if R const., the equation is said to be R-separable. The

1

quantity R is defined in /1/.

No case is known in which the Helmholtz equation is R-separable, so
the question that arises is merely wether the Laplace equation is
R-s¢parable in some coordinate systems. In the following table we

list the R and S separability of the Laplpce and Helmholtz equaticen,

-



respectively in various coordinate systems. We restrict ourselve
to the well-known 11 coordinate systems in which the Helmholtz

equation is separable and the most important coordinate systems
with regard to technical problems in which the Laplace Equatinn

is R-separable.

In Table I S indicates S-separability

» " R "

al -

X " non-separability



TABLE I Lo wTg = ng =0
Coordinate System @ASA:mzwv @ADASMV mA5¢5mSwv cAbAmmy
1. Rectangular Coordinates S 5 S S
2. Circular-Cylinder |
Coordinates S S S : S
3. Elliptic-Cylinder
Coordinates S S S S
4. Parabolic-Cylinder
Coordinates S S S S
5. Spherical Coordinates S S ] S
6. Prolate spheroidal
Coordinates S S S S
7. Oblate spheroidal "
Coordinates ; S S S S
8. Parabolic Coordinates “ ] S S S
G. Conical (Coordinates w S S S S
1
10. Ellipsoidal Coordinates | S S S S
11. Paraboloidal oooﬁmwsmﬁmmw 3 S S S
12. Tangent-Cylinder M
Coordinates ! X X X S
13. Cardioid-Cylinder |
Coordinates w X X X S




TABLE I o0 v h =0 A g =0
Coordinate System rﬁsgsmuuv pASJSMV xAsASMswv oAsdbmv
14. Hyperbolic-Cylinder

Coordinates X X X 3
15. Rose Coordinatss x X X S
16. Cagsian-Qval

Coordinates X X X S
17. Inverse Cagsian-QOval

Coordinates X X X )
18. Bi-Cylindrical

Coordinates X X X S
19. Maxwell-Cylindex

Coordinates X X X S
20. Logarithmic-Cylinder

Coordinates X X X S
29, 1n tang Cylind:r

Coordinates X X X S
22, 1n cosgh Cylindszr

Coordinates X X X S
23, sn-Cylinder oooH@ubmde X X X 3
24. cn~-Cylinder Coordinates X X X S

25, Inversc sn-Cylinder
Coordinates X , x X S




R s T

O - . -

-

4

_«.:w‘mbm I AQ + U Qb= 0 Ak = 0
Coordinate Systems oA543msuv mﬁsgbwv cASASM:wV mAsdzmv
26. 1n sn-Cylinder

Coordinates PN X X 5
27. 1ln cn-Cylinder

Coordinates X X X S
28. Zeta Coordinates X X X S
29. Tangent Sphere

Coordinates X X R R
30. Cardioid Coordiaates X X R R
31. Bispherical " X X R R
32. ¥oroidal " X X R R
33, Inversc prolate

spheroidal Coordinetes X X R R
34. Inverse oblate spheroci-

dal Coordinates X X R R
35. Bi~Cyclide Coordinates X X R R
36. Flat-Ring Cyclide

Coordinates X X R R
37. Disk-Cyclide Coordi-

nates X X R R
38, Cap-Cyclide Coordi-

nates X X R R
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All differential equations which result from a separation of the
Helmholtz equation are special cases of theBOcher equation. Initial
value problems of this generzl equation were solved by Lie Series
in Rep.2 and Rep.3? under the Contract N 6 R 52-046-001. Special
cases were treated in Rep.7 and Rep.8 under the same Contract and
in the Monograph entitled: Solution of Ordinary Differential
Equations by Means of Lie Series, by F.Cap, D.Floriani, W.Groebner,
A.Schett and J.Weil, published by NASA.
The differential equations which result from a separation of the
Laplace equation are also contained in the BOcher equation.
It means that for initial value problems these ordinary differential
equations are solved too. Here we enumerate for the sake of complete-
negs the types of the differential equations resulting from a sepa-
ration of Laplace's equation in various coordinate systems. Con-
cerning the solution of different types we refer to earlier report
under the Contract NGR 52-046-001, if the equation is treated al-
ready or shall solve the equation for initial value problems, if
the equation is not investigated in earlier reports already. We
e¢mphasize, Lie series can only be ugsed to representate functions

in regular domains.

b=
!

Types of Dilferential Eguations Resuiting from a Separation

of Laplace Equation in some important Coordinate Systems;.

o = ¢(n,nn.).
— = J

Type I:

zv (%) - cz(t) = 0 (11,1)




¢ being a constant., This type appears in:

rectangular coordinates, cardioid coordinates,

circular cylinder coordinates, bispherical coordinates,
¢lliptic-cylinder coordinates, toroidal coordinates,
parabolic-cylinder coordinates, inverse prclate spheroidal cooxrds
spherical coordinates inverse oblate spheroidal coord.
prolate spheroidal coordinates, bi-cyclide coordinates,

oblate spheroidal coordinates, flat-ring cyclide coordinates,
parabolic coordinates, disk-cyclide coordinates,
tangent-sphere coordinates, cap-cyclide coordinates.

This type is already treated in Rep.T.

Type IT:

c () + §(1) - (4 e) B(k) = 0 (11,2)
a, b , ¢ being constants. Thﬁs equation appears among the equation of
circular cylinder coord.(a = 1), spherical coordinates
parabolic coordinates, conical coordinates,
tangent-sphere coordinates, cardioid coordinates.

Eq.(I1,2) is already treated in Rep.T7.
Type III:

2n(t) + (a + bt2) 2(t) = 0 (11,3)

Eq.(II,3) appears among the equations of parabolic cylinder coordina-
tes. For the solution of this type see Rep.7.
Type IV:
2 2
z'(t) - (a2 + a3 cosh“t) 2(t) = 0 (1I1,4)
%y as, a being constants. This equation results from a separation of

the Laplace equation in elliptic cylinder coordinates. For solving this

equation see Rep.8.



Type V:
| , 2 2 . .2 %3
z"(t) + coth t 2'(%) + (x"2a"sinh’t - a, - —5~) 2(t) = 0
sinh ¢ »

(11,5)
My 8y Uo a3 being constants.

This eguation appears among the equations in
prolate spheroidal (a=0) coord., toroidal (a=0) coordinates,

inverse prolate spheroidal (a=0) coordinates

Type VI:
. e 2.2 . 2 %3
z"(t) + cot t 2'(t) + (w2 sin"t + o, - > z(t) = 0 (II,6)
sin t
Ky By Ons a3 being constants.
This equation results from:
spherical (a = 0) coordinates,
prolate spheroidal (a = 0) coordinates

oblate spheroidal (a = Q) coordinates,
bispherical (a = 0) coordinates,
inverse prolate spheroidal (a = O) coordinates,
inverse oblate spheroidal (a = 0) coordinates.
Eq.(II1,6) was investigated in Rep.8 already.
Type VITI:

a
z"(t) + tangh t 2'(%) + (u2a2cosh2t - o, + ———25-)z(t) =0 (11,7)
cosh t

T
e

Avat
<

b aPed e “+
ig CONis ns

iy Ay azy GB GNis . 1
oblate spheroidal (a = 0) coordinates,
inverse oblate spheroidal (a = 0) coordinates.

The solution is given in Rep.8.
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Type VIII:

t(2t2-(b2+c2)) (4) (u2t4+a3t2+a2) (4) (11.0)
AN + Zrt + % = 11,
2" (%) (+257) (12-02) (12-02)(+202) z 0

by, ¢y %y Oy aB being'consténts.

This equation appears among the equations in
conical coordinates,

¢llipsoidal coordinates.

For solving Eq.(II,8) see Rep.8.

Type IX:
n2t2+a t-«
Zn(t) +%%%%?—:f'%‘)' Z'(t) + (t_b)(2_0)2 Z(t) = 0 (II,9)

b, c, %, Uy s oc5 being constants.
Eq.(II,9) results from a separation of the Laplace equation in
paraboloidal coordinates. The solution for initial value problems

ig given in Rep.8.

Type X:
2" (%) +§.-1é- ‘t1 + 2 + 5 .fzv(t) +
5 -2, t—a2 t a3$
, +b1t+b2t2+b5t3 j
+ 7 ° i z2(t) = 0 (11,10)

(t-2) (t-3,)° (t-a5)"

where k, o5, Agy By bj being constants (i = 1,2,3; j = 0,1,2,3)

The golution functions of Eq.(II,10) are Heine functions /1/.

2
Leta1=o,32=1,8,3=1/k,



11

bo=-—22'
k
ay aSk'4
b, = (ay+2) + — - =%
k k
b, = (0, +2) + 2k
2 - 2
4
b, = 2k
3
0« k2 ¢ 1
0 < k‘2( 1
and
t snzf
S/

- o -
|2 2 k'4en®6 |

——, | 2({) =0 (11,102)
5 cn2§ dnz‘) )

where the Jacobi elliptic functions:
sn - ginus zamplitudinis
cn ~ cosinus amplitudinis
an - delta ampiitudinis
Eq.(II,70a) results from a separation of the Laplace equation in
bi-cyclide coordinates. Obviovusly the solution functions of Eq.(IT,
10a) are Heine functions /1/.
2

Let 2y = o, ay = 1, a3 =k




bo = -a2k2

by = (opmag) + k% (a,+2)
b, = -(a,+2) - 2k”

by = 2

and

t = dnzg,

we obtain from Eq.(II1,10) the equation

dng(cn2§—3n2g)

Z"(%) + z2' (%) +
snycnf ’
J
o, an®¢ 7
+ l-Zdn % + 0y + ag ;;E;;;ZT é Z(ﬁ) = 0 (11,10b)
_ 5.

which is again solved by Heine functions /1/.

Eq.(II,10b) appears among the equations which one obtains by sepa-
ration of Laplace's equation in bi-cyclide coordinates. The general

~solution of Eq.(II,10) is given by

72(t) = a0 (1) + BY,(t) (I1,11)

where ¥ (i = 1,2) are Heine functions.

For regular domains we can solve Eq.(II,10) by Lie series. As
Eqs.(II,10a), (II,10b) are special cases of Eq.(II,10) we have
only to treat Eq.(II,10).

The solution representation for initial value problems is given in
Rep.2 and Rep.3 by Eq.(14) and Eq.(44), respectively.

Eq.(14) in Rep.2 reads:



The operator D is given by:

N o
=%z T % 0z +
o] 1

- 2 .3 -
) l‘§b0+b1t+b2t +b,b i\ 5
; ? 211/73
YL (t-a,) (t-a,) (t-a5)? 1) °%2
tea,, t & a5y t % a3
£,(8) = = (5= + —— + ——)
1 - 2(t—a1) t-a, t-a3
b_+b, t+b, t2+b, t°
ot OOt 403
£,(4) = - . 5) =
4(t—a1)(t‘az) (t'aB)
A A A A A
N + 2 5 + 2 + 4 5 + 2
t-a, (t-az) t-a, (t—aB) t-a3

(@) o L08Tor () Ter ()&
' 2(t-2 )% (8-ap)¥T (t-ag)T

D% 801t a5(-1)%!
(t—a1)Q+1 (t_az)Q+2 (t—az)Q+1

fz(g)(t> =

AN AP S GO

+ ,
(t_aB)Q+2 (t_aB)Q+1

+ tz

(11,12)

(11,13)

(11,14)
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Egs. (II,12), (II,13), (II,14) solve equation (II,10) for regular

domains.

The solution representation Eq.(44) in Rep. 3 reads:

\ 7 -
2, (%)) PRI 0 T /%
| = ) \ th, | T +
\ Zz(t)/ \ 0 e’ "2 | Z,
. T t-7)% T a 2947
+ L | D,D i dv (11,15)
AN \ a' 1 2 224 f =
=0 % | ‘ ;8.

The integral can be evaluated by an iterative method according to
/2/. The symbol z added after the bracket is to indicate that after

application of the D-cperators Zyy 2, have to be replaced by

¢® D1 anda ¥ D1, respectively. A., A,, T and D, in Eq. (II,15) are
z1 22 1 2 2

given by the relations:

£, i
A o1+ £
1,2 =2 - 17—t
> P (11,16)
< 2 2
(l' = &
A, Ay /
8
D, = —
2 azo

Eqs.(IT,15), (II,16) solve Eq.(I1,10). If the initial values Z(t=t )
and Z'(t:tu) are given, the solution of Eq.(II,10) can be evaluated
for regular domains.

The values Z(t:to) and Z‘(t:to) can be looked up in tables.

The question arises how we can compute the Heine functions by Lie

series representation Egs.(II,12), (II,15).
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The general solution of Eq.(II,10) is given by
z(t) = A% (%) + B‘{z(t)

A and B being arbitrary constants,?f1, %2 are Heine functions.

The solution and its derivative is given by:

z(t) = AX, + BY¥, = Z1(t)

2'(t) = A0, + BA', = 2,(%)

1

Without restriction of generality we may choose:

= = w.; ;= =
Z(t to) 2 1(t t_)) z,
z*(t=to) =.>«:2(t=to) =z,
i.e. we have put A = 1 and B = 0. Further the eguations are va-
lid.
z(t) = ¥ (%) = — D z
1 — vt 1

z' (%) =>{2(t) (11,4)

1]
=
=

For numerical evaluation of ¥

; %e expand Z(t) in the neighborhood

of ¥+ = to and choose a step size of 4 t. As t increases more
Vi

v

=

terms Z have to be calculated if the accuracy is pre-

Al 1

scribed. Since the computers have a limited numerical range, only

2 limited number of terms z, can be calculated ,

t D
vl 1
Consequently, we expand the functions Z(t) at t = t, and using

a certain step size -»t we calculate the function ¥, in the region

1
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to’ t - At t1 the function X& will be expanded again. Continuing

this method, we can compute 4, and kX'1 for regular domains.

1
In an analogous way one may calculate the function:ﬁf’2 by means of
Lie series. Concerning the important problem cf error estimation
of the solution representations Eq.(II,12) and Eq.(II,15) we refer
.to already published papers /2, 3/.

G.MAESS treats in paper /3/ an error estimation, which may perhaps
be used for numerical computation of Eq.(II,12). As we have never
used this method, we cannot decide, wether this error estimation
is suitable for numerical evaluation of Eq.(II,12).

H.KNAPP discusses in paper /2/ the error estimation of the repre-
sentation Eq.(II,15). The usefulness of this method was already
proved by numerical calculations /2/.

Whether Eq.(II,12) or Eq.(II,15) is more advantageous for computing

the solutions can only be decided by help of a computer.

Type XI:
z0 (%) +-%{ Lo A2 ) +
;t—a1 t-a2 t—a3 j
, o +b byt 1
+-Z‘ oon ) (ton) (oom )2! z(t) =0 (11,18)
' 1 2 37

where, By 259 aB, bo, b1, b2, b3 being constants. The solution

functiuns of Eq.(II,18) are Wangerin functions.

If ay = 1,8, = 1/k°, ag = 0
o
b =—"%
© k
b, = == (11,19)
k
b2 = 1—a3



- -

and

2
t—.—sn\
S

one obtains from Eq.(II,18) the equation

Z"(‘;)) +_‘3_YES_~_Q§_S. Z"(i) +
sn § ’

+§k sn®§ - @y - gk snz‘; + = N 2(¢) = 0 (11,18a)

k, Aoy as being constants
¢én cosinus amplitudinis
sn sinus "

dn delta "

This equation results from a separatirn of Laplace's equation in

"flat-ring coordinates,

cap-cyclide coordinates.

By the transformation t = cnzj one obtains with Egs.(II,19) and

Eq.(II,18) the differential equation.

sn?dnf
2'(§) - ———2'(3) +
' en
{2 oo 2 2 k12
+ Koy -, +oa(KPen®S - K ) a(f) = 0 (1I,18b)
i = s : cn'-(g | )
K'\2
Ifa; =158, == () a5 = 0
b = (k'/k)2
2y » 2
b, = (a,-k")/k
b2 = a3-1




This equation appears among the separated Laplace equation of

disk-cyclide coordinates.

1

bo = aB

(1'% -ay) /c?

5 1—a3(k'/k)2

Ifa, =1, a, = -(k'/k)2, a5 = 0

o’
]

o
]

t = cnzg

one obtains from (II,18) the equation

) sn%an
2 (§) - —— 21(5) +
cn §
+ r;dnzi + a, + Q (k'20n2¢ - K ﬂ Z =0 (11,18¢c)
{ ’ 2 5 ) cnzgnl ’

This equation appears among the separated Laplace equations in

disk-cyclide coordinates.

If a, = 1, ay = k-, a3 =0
bO = —a3k2
b1 = -a,
b3 = 1-oc3
and
t = dn2%

one obtains from the origin equation (I1,18) the equation:

5'23nﬁcn%
) e 2 ()

- g !
+ ;-dnzg + a, + aj(dnzﬁ + -) IZ(%) =0 (11,184)



- A9 -

This equation results from a separation of the Laplace's egquation in

flat-ring coordinates,

cap-cyclide coordinates.

Eqs. (II,18a), (II1,18b), (II,18c) and (II,18d) are solved by

waneerin functions.

The above enumerated equations are special cases of Eq.{(II,18).
Therefore we have only to solve Eq.(I1I,18).

For regular domains we can representate the solutiecn by Lie series.
For this case the solution is given by (II,12) and (II,15), respec-

tively. The operator D reads:

™ +b,t+b,t ;
Lo 1 2 ¥ g
5 ! z1) - (11,20)

%;(t_a1)(t-az)(t-a3) 2

|-

for + + a

f1(t) =~ 2\%i3F t-a

2
r :
] Ebo+b1t+b2t !

4 2(t-a1)(t-az)(t-a3)2

£,(%) = -
A i i A
1,2 3 4

+ 5+
t-a,  t-a, (t-aa) t-a

(11,21)
3

A1, A2, AB’ A, being constants.

4




. - 20 =

f1(Q)(t) (1) . (1) o . (=1%o

2(t—a1)Q+1 2(t-a2)Q+1 (t—a5)Q+1

4 (D% 4, ()Mo 4, (1) e
(t_a1)g+1 * (t_a2)9+1 * (t_a3)9+1
AB(—1)Q+1(Q+1)!

(t-aB)Q+2

]

(11,22)

With Eqs.(II,12), (1II,15), (I1,20), (II,21) and (II,22) Eq.(I1I,18)

is solved and the Wangerin functions can be computated by Lie series.

The Lie series solution (II,12) and (II,15) of Eq.(II,18) converges
within a circle whose center is at t = to and whose radius extends
to the nearest singularity of the differential equation.

The general solution of Eq.(II,18) is given by
z2(t) = AW, + BW,

where A and B are arbitrary constants and W1, W2 are Wangerin

functions.
For computing the Wangerin functions by means of Lie series we

refer to the treatment under type X in this work.

TIII Conclusion

In earlier reports under the contract No.NGR 52-046-001 and in
this work we have investigated ordinary differential equations
which result from a separativn of Helmholtz and Laplace equation
in various coordinate systems.

The solution functions:

Weber functions, Bessel functions, Baer functions, Mathieu functions,



Sl

Legendre functions, Lamé functions, Wangerin functions and Heine
functions were repregented by Lie series. For computing the Weber
functions, the Bessel functions and the Mathieu functions codes
were written. Numerical results were published in Rep.5, Rep.6,
contract NGR-52-046-001 and the monograph entitled: The Solution
of Ordinary Differential Equation by Means of Lie Series, by_
F.Cap, W.Groebner, D.Floriani, A.Schett and J.Weil, published by

NASA.

APPENDIX

Here we show that for special differential equations the series
T
Llhﬂ v

szo breaks off, i.e., the solution is represented by

polynomials. As a special example we investigate Legendre polyno-

mials.

Legendre Polynomials

We consider the differential equation which appears in the sepa-
ration equations of spherical pular coordinates, after splitting

up the singularities,

(£7-1)2" + 2421 - n(n+1)Z = O (4,1)
AR el -
Z(t) = > T D'z
[¢}
\mc t\’-1 v
Z'(t) = W\)D A (sz)
o 1;\/-2 ,
zh(t) = v (v-1) D'z
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Inserting Eq.(A,2) in Eq.(4,1) one obtains:

-2 -1
2, t" =y
(t°-1) v(p=1) D'z 4+ 2t ; e,
L A

. D'z - n(n+1) 2;; iLr 0

so that
LA i S V=2
PR g 3 T ot |
S _— @)_1) Dz - -———-x;o)-1) Yz +
A Ly V!
\T.‘.C fv 2.8 1/
+ 2 :TyAﬁ“z - n(n+1)>_6 %T 1’z = 0
A— vt

ifw-2 = p one obtains

x> Y
N t L p+2 ) (v +1 V42
i {u(u-‘l) Dz -y D 2+

, o
+ 2vDMz - n(n+1) D'z Y =0 (4,3)

J/

Necessary and sufficient that Eq.(A4,3) is valid is the relation

Dz i(v-1)v + 2V - n(n+1)3 1% -0 (4,4)
or
DV+2z = DJZX (U-1)v + 2V - n(n+1)§ (A,S)

1 . \
1f D%z and D'z are given one can calculate all D'z by Eq. (4,5).

RSpTTTRETIRYIC TR
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For v=n it follows

Dn+2z = (n2 -n+2n-n®- n)o"z = 0

This means, the series ZU'%T sz breaks off, in other words we
have polynomials.

It is well known, that Eq.(4,1) is solved by Legendre polynomials

P, i.e., the relation is valid:

? &£
zZ(t) = =7 Dz =P
AU.._ 1. Ad
& v s s
For computing Pn by the series~} :;-D z we need the initial
T
values

— { -~
z(t = t_) and 2'(t = to) or
Pn(t = to) and P'n(t = t)).

In analogy one can obtain other polynomials.
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